VIDYA BHAWAN BALIKA VIDYAPITH LAKHISARAI

CLASS VIII SUB: MATHEMATICS (BASED ON NCERT) DATE: 13/07/2020

			EXE	RCISE 6.3	
	What could mbers?	be the possible	e 'one's digits o	of the square root of	f each of the following
	(i) 9801	(ii)	99856	(iii) 998001	(iv) 657666025
Sol	: The possib	le digit at one's	s place of the s	quare root of:	
	(i) 9801 ca	in be 1 or 9.			
	[∵1×1	= 1 and 9 × 9 =	81]		
2.	Without do	ing any calcula	tion, find the n	umbers which are s	surely not perfect squares.
	(i) 152	(ii)	257	(iii) 408	(iv) 441
So]	: We know t	hat the ending	digit of perfec	t square is 0, 1, 4, 5,	6, and 9.
		er ending in 2, 3 nnot be a perfe		ever be a perfect squ	lare.
	Find the squ	are roots of. 1	00 and 169 by	the method of repe	eated subtraction.
	Find the squ	100 – 1 = 99 91 – 7 = 84 64 – 13 = 51	00 and 169 by 99-3=96 84-9=75 51-15=36	96-5=91 75-11=64 36-17=19	eated subtraction.
	Find the squ (i) √100 We have ∴ We reach at	100 – 1 = 99 91 – 7 = 84	99 – 3 = 96 84 – 9 = 75 51 – 15 = 36	96 – 5 = 91 75 – 11 = 64 36 – 17 = 19	eated subtraction.
	Find the squ (i) √100 We have	100 – 1 = 99 91 – 7 = 84 64 – 13 = 51 19 – 19 = 0	99 – 3 = 96 84 – 9 = 75 51 – 15 = 36	96 – 5 = 91 75 – 11 = 64 36 – 17 = 19	eated subtraction.
	Find the squ (i) √100 We have ∴ We reach at ∴ √100 = 10.	100 - 1 = 99 91 - 7 = 84 64 - 13 = 51 19 - 19 = 0 to by successive subtrace 169 - 1 = 168 160 - 7 = 153 133 - 13 = 120 88 - 19 = 69	99 – 3 = 96 84 – 9 = 75 51 – 15 = 36	96 – 5 = 91 75 – 11 = 64 36 – 17 = 19	eated subtraction.
3. Sol:	Find the squ (i) √100 We have ∴ We reach at ∴ √100 = 10. (ii) √169 We have	100 - 1 = 99 91 - 7 = 84 64 - 13 = 51 19 - 19 = 0 0 by successive subtrace 169 - 1 = 168 160 - 7 = 153 133 - 13 = 120	99 - 3 = 96 84 - 9 = 75 51 - 15 = 36 ction of 10 odd number 168 - 3 = 165 153 - 9 = 144 120 - 15 = 105 69 - 21 = 48	96 - 5 = 91 75 - 11 = 64 36 - 17 = 19 s. 165 - 5 = 160 144 - 11 = 1.33 105 - 17 = 88 48 - 23 = 25	eated subtraction.
Sol:	Find the squ (i) $\sqrt{100}$ We have \therefore We reach at $\therefore \sqrt{100} = 10.$ (ii) $\sqrt{169}$ We have \therefore We have at $\therefore \sqrt{169} = 13.$	100 - 1 = 99 91 - 7 = 84 64 - 13 = 51 19 - 19 = 0 to by successive subtrace 169 - 1 = 168 160 - 7 = 153 133 - 13 = 120 88 - 19 = 69 25 - 25 = 0 O by successive subtrace	99 - 3 = 96 84 - 9 = 75 51 - 15 = 36 ction of 10 odd number 168 - 3 = 165 153 - 9 = 144 120 - 15 = 105 69 - 21 = 48 tion of 13 odd numbers	96 - 5 = 91 75 - 11 = 64 36 - 17 = 19 s. 165 - 5 = 160 144 - 11 = 1.33 105 - 17 = 88 48 - 23 = 25	
Sol:	Find the squ (i) $\sqrt{100}$ We have \therefore We reach at $\therefore \sqrt{100} = 10.$ (ii) $\sqrt{169}$ We have \therefore We have at $\therefore \sqrt{169} = 13.$	100 - 1 = 99 91 - 7 = 84 64 - 13 = 51 19 - 19 = 0 to by successive subtrace 169 - 1 = 168 160 - 7 = 153 133 - 13 = 120 88 - 19 = 69 25 - 25 = 0 O by successive subtrace	99 - 3 = 96 84 - 9 = 75 51 - 15 = 36 ction of 10 odd number 168 - 3 = 165 153 - 9 = 144 120 - 15 = 105 69 - 21 = 48 tion of 13 odd numbers	96 - 5 = 91 75 - 11 = 64 36 - 17 = 19 s. 165 - 5 = 160 144 - 11 = 1.33 105 - 17 = 88 48 - 23 = 25	